Search results
Results From The WOW.Com Content Network
The generation of a protein sequence is much easier than the determination of a protein structure. However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed. [39]
Myoglobin sketch Alpha helix. 1958 – Myoglobin was the very first crystal structure of a protein molecule. [2] Myoglobin cradles an iron-containing heme group that reversibly binds oxygen for use in powering muscle fibers, and those first crystals were of myoglobin from the sperm whale, whose muscles need copious oxygen storage for deep dives.
The full assembled capsid structure of the satellite tobacco mosaic virus, with the monomer shown above at the bottom of the highlighted pentamer. The remainder of the protein chains are shown in purple and the RNA in the interior of the capsid is shown in brown. The axis of the jelly roll in this single jelly roll capsid is parallel to the ...
The monomers, which are self-assembled around the template molecule by interaction between functional groups on both the template and monomers, are polymerized to form an imprinted matrix (commonly known in the scientific community as a molecular imprinted polymer (MIP)).
Epoxide monomers may be cross linked with themselves, or with the addition of a co-reactant, to form epoxy; BPA is the monomer precursor for polycarbonate; Terephthalic acid is a comonomer that, with ethylene glycol, forms polyethylene terephthalate. Dimethylsilicon dichloride is a monomer that, upon hydrolysis, gives polydimethylsiloxane.
Cell surface (cortical) actin remodeling is a cyclic (9-step) process where each step is directly responsive to a cell signaling mechanism. Over the course of the cycle, actin begins as a monomer, elongates into a polymer with the help of attached actin-binding-proteins, and disassembles back into a monomer so the remodeling cycle may commence again.
The structure of simple macromolecules, such as homopolymers, may be described in terms of the individual monomer subunit and total molecular mass. Complicated biomacromolecules, on the other hand, require multi-faceted structural description such as the hierarchy of structures used to describe proteins .
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.