When.com Web Search

  1. Ad

    related to: fibonacci sequence formula the golden ratio calculator number of words in english

Search results

  1. Results From The WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    Exceptionally, the golden ratio is equal to the limit of the ratios of successive terms in the Fibonacci sequence and sequence of Lucas numbers: [42] + = + =. In other words, if a Fibonacci and Lucas number is divided by its immediate predecessor in the sequence, the quotient approximates ⁠ φ {\displaystyle \varphi } ⁠ .

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same ...

  4. Fibonacci word - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_word

    The palindromic density of the infinite Fibonacci word is thus 1/φ, where φ is the golden ratio: this is the largest possible value for aperiodic words. [ 3 ] In the infinite Fibonacci word, the ratio (number of letters)/(number of zeroes) is φ, as is the ratio of zeroes to ones.

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The ratio between two consecutive elements converges to the golden ratio, except in the case of the sequence which is constantly zero and the sequences where the ratio of the two first terms is (). The sequence can be written in the form

  6. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377. [34] [35] Fibonacci did not ...

  7. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    This characterization is exact: every sequence of complex numbers that can be written in the above form is constant-recursive. [20] For example, the Fibonacci number is written in this form using Binet's formula: [21] =,

  8. Reciprocal Fibonacci constant - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant

    The reciprocal Fibonacci constant ψ is the sum of the reciprocals of the Fibonacci numbers: = = = + + + + + + + +. Because the ratio of successive terms tends to the reciprocal of the golden ratio, which is less than 1, the ratio test shows that the sum converges.

  9. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Fibonacci sequence manifests in the number of spiral arms at a unique spot on the Mandelbrot set, mirrored both at the top and bottom. This distinctive location demands the highest number of iterations of for a detailed fractal visual, with intricate details repeating as one zooms in. [ 42 ]