When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    For example, the topological quotient of the metric space [,] identifying all points of the form (,) is not metrizable since it is not first-countable, but the quotient metric is a well-defined metric on the same set which induces a coarser topology. Moreover, different metrics on the original topological space (a disjoint union of countably ...

  3. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. [1] [2] Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.

  4. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Isomorphisms between metric spaces are called isometries. Every metric space is also a topological space. A topological space is called metrizable, if it underlies a metric space. All manifolds are metrizable. In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge ...

  5. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    A set with a topology is called a topological space. Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.

  6. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    Metric spaces are an important class of topological spaces where the distance between any two points is defined by a function called a metric. In a metric space, an open set is a union of open disks, where an open disk of radius r centered at x is the set of all points whose distance to x is less than r. Many common spaces are topological ...

  7. Metrizable space - Wikipedia

    en.wikipedia.org/wiki/Metrizable_space

    In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space.That is, a topological space (,) is said to be metrizable if there is a metric: [,) such that the topology induced by is . [1] [2] Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

  8. Completely metrizable space - Wikipedia

    en.wikipedia.org/wiki/Completely_metrizable_space

    This implies e. g. that every completely metrizable topological vector space is complete. Indeed, a topological vector space is called complete iff its uniformity (induced by its topology and addition operation) is complete; the uniformity induced by a translation-invariant metric that induces the topology coincides with the original uniformity.

  9. Euclidean topology - Wikipedia

    en.wikipedia.org/wiki/Euclidean_topology

    In any metric space, the open balls form a base for a topology on that space. [1] The Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} is the topology generated by these balls.