When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  3. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Proof: We will prove this statement using the portmanteau lemma, part A. First we want to show that (X n, c) converges in distribution to (X, c). By the portmanteau lemma this will be true if we can show that E[f(X n, c)] → E[f(X, c)] for any bounded continuous function f(x, y). So let f be such arbitrary bounded continuous function.

  5. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The continuous mapping theorem states that for a continuous function g, if the sequence {X n} converges in distribution to X, then {g(X n)} converges in distribution to g(X). Note however that convergence in distribution of {X n} to X and {Y n} to Y does in general not imply convergence in distribution of {X n + Y n} to X + Y or of {X n Y n} to XY.

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    Every non-empty subset of the real numbers which is bounded from above has a least upper bound.. In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers.

  7. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...

  8. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    The plot of a convergent sequence {a n} is shown in blue. Here, one can see that the sequence is converging to the limit 0 as n increases. In the real numbers , a number L {\displaystyle L} is the limit of the sequence ( x n ) {\displaystyle (x_{n})} , if the numbers in the sequence become closer and closer to L {\displaystyle L} , and not to ...

  9. Dominated convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Dominated_convergence_theorem

    Since the sequence is uniformly bounded, there is a real number M such that |f n (x)| ≤ M for all x ∈ S and for all n. Define g(x) = M for all x ∈ S. Then the sequence is dominated by g. Furthermore, g is integrable since it is a constant function on a set of finite measure. Therefore, the result follows from the dominated convergence ...