Search results
Results From The WOW.Com Content Network
In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.
The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of convergence are indicated (e.g., if one implies another), formulaically rather than in prose for quick ...
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
Loosely, with this mode of convergence, we increasingly expect to see the next outcome in a sequence of random experiments becoming better and better modeled by a given probability distribution. More precisely, the distribution of the associated random variable in the sequence becomes arbitrarily close to a specified fixed distribution.
A series can be uniformly convergent and absolutely convergent without being uniformly absolutely-convergent. For example, if ƒ n (x) = x n /n on the open interval (−1,0), then the series Σf n (x) converges uniformly by comparison of the partial sums to those of Σ(−1) n /n, and the series Σ|f n (x)| converges absolutely at each point by the geometric series test, but Σ|f n (x)| does ...
In mathematics, Delta-convergence, or Δ-convergence, is a mode of convergence in metric spaces, weaker than the usual metric convergence, and similar to (but distinct from) the weak convergence in Banach spaces. In Hilbert space, Delta-convergence and weak convergence coincide. For a general class of spaces, similarly to weak convergence ...
Unconditional convergence is often defined in an equivalent way: A series is unconditionally convergent if for every sequence () =, with {, +}, the series = converges. If X {\displaystyle X} is a Banach space , every absolutely convergent series is unconditionally convergent, but the converse implication does not hold in general.