Search results
Results From The WOW.Com Content Network
A greedy algorithm is optimal for every R-compatible linear objective function over a greedoid. The intuition behind this proposition is that, during the iterative process, each optimal exchange of minimum weight is made possible by the exchange property, and optimal results are obtainable from the feasible sets in the underlying greedoid.
The farthest-first traversal of a finite point set may be computed by a greedy algorithm that maintains the distance of each point from the previously selected points, performing the following steps: [3] Initialize the sequence of selected points to the empty sequence, and the distances of each point to the selected points to infinity.
This greedy algorithm actually achieves an approximation ratio of (′) where ′ is the maximum cardinality set of . For δ − {\displaystyle \delta -} dense instances, however, there exists a c ln m {\displaystyle c\ln {m}} -approximation algorithm for every c > 0 {\displaystyle c>0} .
Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used.
Pages in category "Greedy algorithms" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. A. A* search algorithm; B.
The notion of matroid has been generalized to allow for other types of sets on which a greedy algorithm gives optimal solutions; see greedoid and matroid embedding for more information. Korte and Lovász would generalize these ideas to objects called greedoids , which allow even larger classes of problems to be solved by greedy algorithms.
This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows: Alice: Task 1 = 1, Task 2 = 2. George: Task 1 = 5, Task 2 = 8. The greedy algorithm would assign Task 1 to Alice and Task 2 to George, for a total cost of 9; but the reverse assignment has a total cost of 7.
An acute triangle (or acute-angled triangle) is a triangle with three acute angles (less than 90°). An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse ...