When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    This is unfounded because that law has relativistic corrections. For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1]

  3. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    For example, the Schwarzschild radius () of the Earth is roughly 8.9 mm, while the Sun, which is 3.3 × 10 5 times as massive [6] has a Schwarzschild radius () of approximately 3.0 km. The ratio becomes large only in close proximity to black holes and other ultra-dense objects such as neutron stars .

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    Examples of important exact solutions include the Schwarzschild solution and the Friedman-Lemaître-Robertson–Walker solution. The EIH approximation plus other references (e.g. Geroch and Jang, 1975 - 'Motion of a body in general relativity', JMP, Vol. 16 Issue 1).

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is

  7. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. [1] The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric , allowing distances to be measured on that surface.

  8. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold.Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection.

  9. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    For example, the Schwarzschild radius of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s r {\textstyle {\frac {r_{\text{s}}}{r}}} is roughly 4 ...