Search results
Results From The WOW.Com Content Network
The minor sector is shaded in green while the major sector is shaded white. A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. [1]
The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):
Shape Figure ¯ ¯ Area rectangle area: General triangular area + + [1] Isosceles-triangular area: Right-triangular area: Circular area: Quarter-circular area [2]: Semicircular area [3]: Circular sector
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is =. In the special case 𝜃 = 2 π, these formulae yield the circumference of a complete circle and area of a complete disc, respectively.
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r , it is possible to partition the circle into sectors , as shown in the figure to the right.
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
The following is a list of second moments of area of ... to an axis through the centroid of the sector and the center of the circle = ... formula is valid ...