When.com Web Search

  1. Ad

    related to: particle swarm optimization matlab

Search results

  1. Results From The WOW.Com Content Network
  2. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.

  3. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Stochastic optimization is an umbrella set of methods that includes simulated annealing and numerous other approaches. Particle swarm optimization is an algorithm modeled on swarm intelligence that finds a solution to an optimization problem in a search space, or models and predicts social behavior in the presence of objectives.

  4. Griewank function - Wikipedia

    en.wikipedia.org/wiki/Griewank_function

    The Griewank function is commonly used to benchmark global optimization algorithms, such as genetic algorithms or particle swarm optimization. In addition to the original version, there are several variants of the Griewank function specifically designed to test algorithms in high-dimensional optimization scenarios [2].

  5. Firefly algorithm - Wikipedia

    en.wikipedia.org/wiki/Firefly_algorithm

    It can be shown that the limiting case corresponds to the standard Particle Swarm Optimization (PSO). In fact, if the inner loop (for j) is removed and the brightness I j {\displaystyle I_{j}} is replaced by the current global best g ∗ {\displaystyle g^{*}} , then FA essentially becomes the standard PSO.

  6. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    Ant colony optimization is based on the ideas of ant foraging by pheromone communication to form paths. Primarily suited for combinatorial optimization and graph problems. Particle swarm optimization is based on the ideas of animal flocking behaviour. Also primarily suited for numerical optimization problems.

  7. Atulya Nagar - Wikipedia

    en.wikipedia.org/wiki/Atulya_Nagar

    Additionally, he compared differential evolution (DE), particle swarm optimization (PSO), and a hybrid algorithm (HPSDE) for optimizing hydrocarbon reservoir well placement, showing the hybrid approach's superior performance in maximizing recovery and addressing geological uncertainty.

  8. Multi-swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-swarm_optimization

    Multi-swarm optimization is a variant of particle swarm optimization (PSO) based on the use of multiple sub-swarms instead of one (standard) swarm. The general approach in multi-swarm optimization is that each sub-swarm focuses on a specific region while a specific diversification method decides where and when to launch the sub-swarms.

  9. Swarm intelligence - Wikipedia

    en.wikipedia.org/wiki/Swarm_intelligence

    Particle swarm optimization (PSO) is a global optimization algorithm for dealing with problems in which a best solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space and seeded with an initial velocity , as well as a communication channel between the particles.