Search results
Results From The WOW.Com Content Network
The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it ...
Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning ...
The position of an n-dimensional rigid body is defined by the rigid transformation, [T] = [A, d], where d is an n-dimensional translation and A is an n × n rotation matrix, which has n translational degrees of freedom and n(n − 1)/2 rotational degrees of freedom.
In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.
The information in this section can be found in. [1] The rigidity matrix can be viewed as a linear transformation from | | to | |.The domain of this transformation is the set of | | column vectors, called velocity or displacements vectors, denoted by ′, and the image is the set of | | edge distortion vectors, denoted by ′.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
One takes f(0) to be the identity transformation I of , which describes the initial position of the body. The position and orientation of the body at any later time t will be described by the transformation f(t). Since f(0) = I is in E + (3), the same must be true of f(t) for any later time. For that reason, the direct Euclidean isometries are ...
Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space). Rigid transformations are those that preserve the distance between any two