Search results
Results From The WOW.Com Content Network
The earliest and most direct observational evidence of the validity of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang nucleosynthesis (BBN).
In physics and cosmology, the mathematical universe hypothesis (MUH), also known as the ultimate ensemble theory, is a speculative "theory of everything" (TOE) proposed by cosmologist Max Tegmark. [ 1 ] [ 2 ] According to the hypothesis, the universe is a mathematical object in and of itself.
In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation. In set theory, universes are often classes that contain (as elements) all sets for which one hopes to prove a particular theorem.
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang.
The history of the universe after inflation but before a time of about 1 second is largely unknown. [26] However, the universe is known to have been dominated by ultrarelativistic Standard Model particles, conventionally called radiation, by the time of neutrino decoupling at about 1 second. [27]
The theory explains that the universe will expand until all matter decays and ultimately turns to light. Since nothing in the universe would have any time or distance scale associated with it, the universe becomes identical with the Big Bang, resulting in a type of Big Crunch that becomes the next Big Bang, thus perpetuating the next cycle. [21]
Don't act like you've seen bigger.
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory; Brill–Noether theory; Catastrophe theory; Category theory; Chaos theory; Character theory; Choquet theory; Class field theory; Cobordism theory; Coding theory; Cohomology theory ...