Search results
Results From The WOW.Com Content Network
In fluids with relatively low viscosity there is an almost linear, inverse relationship between temperature and surface tension. [13] The decrease in surface tension increases the wettability of the capillary walls, making it easier for the fluid to flow through the capillary. Heat also effects the viscosity of a fluid inside a capillary.
Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes.The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues.
Robert (Robin) Sanno Fåhræus, a Swedish pathologist, and hematologist, and Johan Torsten Lindqvist, a Swedish physician, observed that when blood flows through vessels smaller than about 1.5 mm in diameter, the apparent viscosity of the fluid decreases. The viscosity of blood decreases as the percent of the diameter of a vessel occupied by ...
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...
Zero viscosity (no resistance to shear stress) is observed only at very low temperatures in superfluids; otherwise, the second law of thermodynamics requires all fluids to have positive viscosity. [4] [5] A fluid that has zero viscosity (non-viscous) is called ideal or inviscid. For non-Newtonian fluid's viscosity, there are pseudoplastic ...