When.com Web Search

  1. Ads

    related to: fast fourier algorithms

Search results

  1. Results From The WOW.Com Content Network
  2. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.

  3. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  4. Bruun's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bruun's_FFT_algorithm

    Bruun's algorithm is a fast Fourier transform (FFT) algorithm based on an unusual recursive polynomial-factorization approach, proposed for powers of two by G. Bruun in 1978 and generalized to arbitrary even composite sizes by H. Murakami in 1996.

  5. Bailey's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bailey's_FFT_algorithm

    Bailey algorithm (4-step version) for a 16-point FFT The Bailey's FFT (also known as a 4-step FFT ) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT ...

  6. Butterfly diagram - Wikipedia

    en.wikipedia.org/wiki/Butterfly_diagram

    In the context of fast Fourier transform algorithms, a butterfly is a portion of the computation that combines the results of smaller discrete Fourier transforms (DFTs) into a larger DFT, or vice versa (breaking a larger DFT up into subtransforms).

  7. Category:FFT algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:FFT_algorithms

    This category is for fast Fourier transform (FFT) algorithms, i.e. algorithms to compute the discrete Fourier transform (DFT) in O(N log N) time (or better, for approximate algorithms), where is the number of discrete points.

  8. Prime-factor FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Prime-factor_FFT_algorithm

    The prime-factor algorithm (PFA), also called the Good–Thomas algorithm (1958/1963), is a fast Fourier transform (FFT) algorithm that re-expresses the discrete Fourier transform (DFT) of a size N = N 1 N 2 as a two-dimensional N 1 ×N 2 DFT, but only for the case where N 1 and N 2 are relatively prime.

  9. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers, published by Arnold Schönhage and Volker Strassen in 1971. [1] It works by recursively applying fast Fourier transform (FFT) over the integers modulo 2 n + 1 {\displaystyle 2^{n}+1} .