Search results
Results From The WOW.Com Content Network
The kinetic theory of gases deals not only with gases in thermodynamic equilibrium, but also very importantly with gases not in thermodynamic equilibrium. This means using Kinetic Theory to consider what are known as "transport properties", such as viscosity, thermal conductivity, mass diffusivity and thermal diffusion.
Perhaps the greatest success of the kinetic theory of gases, as it came to be called, was the discovery that for gases, the temperature as measured on the Kelvin (absolute) temperature scale is directly proportional to the average kinetic energy of the gas molecules. Graham's law for diffusion could thus be understood as a consequence of the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Kinetic theory may refer to: Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of ...
However, the equilibrium constant will no longer be dimensionless and will have units of reciprocal concentration instead. The difference between the kinetic and thermodynamic derivations of the Langmuir model is that the thermodynamic uses activities as a starting point while the kinetic derivation uses rates of reaction.
Building on his theory of the mechanical explanation of gravity, he was the first to develop the kinetic theory, independently of earlier and equally neglected partial accounts by Daniel Bernoulli and John Herapath. He published it, at his own expense, in his book Thoughts on the Mental Functions (1843).
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
In two papers outlining his "theory of atomicity of the elements" (1857–58), Friedrich August Kekulé was the first to offer a theory of how every atom in an organic molecule was bonded to every other atom. He proposed that carbon atoms were tetravalent, and could bond to themselves to form the carbon skeletons of organic molecules.