When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  3. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    It is possible to prove the least-upper-bound property using the assumption that every Cauchy sequence of real numbers converges. Let S be a nonempty set of real numbers. If S has exactly one element, then its only element is a least upper bound. So consider S with more than one element, and suppose that S has an upper bound B 1.

  4. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    In any metric space, a Cauchy sequence is bounded (since for some N, all terms of the sequence from the N-th onwards are within distance 1 of each other, and if M is the largest distance between and any terms up to the N-th, then no term of the sequence has distance greater than + from ).

  5. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The monotone convergence theorem (described as the fundamental axiom of analysis by Körner [1]) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers.

  6. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    In all other cases, the proof is a slight modification of the proofs given above. In the proof of the boundedness theorem, the upper semi-continuity of f at x only implies that the limit superior of the subsequence {f(x n k)} is bounded above by f(x) < ∞, but that is enough to obtain the

  7. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .

  8. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    The essential thrust of a proof follows, patterned after Oresme's proof of the divergence of the harmonic series. To see the first inequality, the terms of the original series are rebracketed into runs whose lengths are powers of two, and then each run is bounded above by replacing each term by the largest term in that run. That term is always ...

  9. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A real-valued function is bounded if and only if it is bounded from above and below. [ 1 ] [ additional citation(s) needed ] An important special case is a bounded sequence , where X {\displaystyle X} is taken to be the set N {\displaystyle \mathbb {N} } of natural numbers .