Search results
Results From The WOW.Com Content Network
A subset S of a partially ordered set P is called bounded above if there is an element k in P such that k ≥ s for all s in S. The element k is called an upper bound of S. The concepts of bounded below and lower bound are defined similarly. (See also upper and lower bounds.)
A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.
A real-valued function is bounded if and only if it is bounded from above and below. [ 1 ] [ additional citation(s) needed ] An important special case is a bounded sequence , where X {\displaystyle X} is taken to be the set N {\displaystyle \mathbb {N} } of natural numbers .
Regardless of whether the random variable is bounded above, below, or both, the truncation is a mean-preserving contraction combined with a mean-changing rigid shift, and hence the variance of the truncated distribution is less than the variance of the original normal distribution.
In particular, every subset Y of X is bounded above by X and below by the empty set ∅ because ∅ ⊆ Y ⊆ X. Hence, it is possible (and sometimes useful) to consider superior and inferior limits of sequences in ℘(X) (i.e., sequences of subsets of X). There are two common ways to define the limit of sequences of sets. In both cases:
Each set has a supremum (infimum), if it is bounded from above (below). Proof: Without loss of generality one can look at a set A ⊂ R {\displaystyle A\subset \mathbb {R} } that has an upper bound. One can now construct a sequence ( I n ) n ∈ N {\displaystyle (I_{n})_{n\in \mathbb {N} }} of nested intervals I n = [ a n , b n ] {\displaystyle ...
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.
A chain complex is bounded above if all modules above some fixed degree N are 0, and is bounded below if all modules below some fixed degree are 0. Clearly, a complex is bounded both above and below if and only if the complex is bounded. The elements of the individual groups of a (co)chain complex are called (co)chains.