When.com Web Search

  1. Ads

    related to: vector algebra previous year questions

Search results

  1. Results From The WOW.Com Content Network
  2. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  3. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  4. Vector algebra - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra

    The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product; Any of the original vector algebras of the nineteenth ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  6. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector.

  7. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Every algebra over a field is a vector space, but elements of an algebra are generally not called vectors. However, in some cases, they are called vectors, mainly due to historical reasons. Vector quaternion, a quaternion with a zero real part; Multivector or p-vector, an element of the exterior algebra of a vector space.