Ad
related to: find the opposite by tangent line theorem given the followingstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...
The same inversion transforms the third circle into another circle. The solution of the inverted problem must either be (1) a straight line parallel to the two given parallel lines and tangent to the transformed third given circle; or (2) a circle of constant radius that is tangent to the two given parallel lines and the transformed given circle.
A circle is tangent to a point if it passes through the point, and tangent to a line if they intersect at a single point P or if the line is perpendicular to a radius drawn from the circle's center to P. Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector.
The two line segments connecting opposite points of tangency have equal lengths. One pair of opposite tangent lengths have equal lengths. The bimedians have equal lengths. The products of opposite sides are equal. The center of the incircle lies on the diagonal that is the axis of symmetry.
If a point P moves along a line l, its polar p rotates about the pole L of the line l. If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points. If a point lies on the circle, its polar is the tangent through this point. If a point P lies on its own polar line, then P is on the circle.
The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.
Let a triangle be given with vertices A, B, and C, opposite sides of lengths a, b, and c, area K, and a line that is tangent to the triangle's incircle at any point on that circle. Denote the signed perpendicular distances of the vertices from the line as a ', b ', and c ', with a distance being negative if and only if the vertex is on the ...
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.