When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities .

  3. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...

  4. Hyperreal number - Wikipedia

    en.wikipedia.org/wiki/Hyperreal_number

    The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...

  5. Projectively extended real line - Wikipedia

    en.wikipedia.org/wiki/Projectively_extended_real...

    The projectively extended real line extends the field of real numbers in the same way that the Riemann sphere extends the field of complex numbers, by adding a single point called conventionally ∞. In contrast, the affinely extended real number line (also called the two-point compactification of the real line) distinguishes between +∞ and ...

  6. Set function - Wikipedia

    en.wikipedia.org/wiki/Set_function

    The Lebesgue measure on is a set function that assigns a non-negative real number to every set of real numbers that belongs to the Lebesgue -algebra. [ 5 ] Its definition begins with the set Intervals ⁡ ( R ) {\displaystyle \operatorname {Intervals} (\mathbb {R} )} of all intervals of real numbers, which is a semialgebra on R . {\displaystyle ...

  7. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the set of all real numbers is an interval, denoted (−∞, ∞); and any single real number a is an interval, denoted [a, a].

  8. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  9. Epigraph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Epigraph_(mathematics)

    Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set ⁡ = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]