Search results
Results From The WOW.Com Content Network
In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities .
The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...
In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...
The projectively extended real line extends the field of real numbers in the same way that the Riemann sphere extends the field of complex numbers, by adding a single point called conventionally ∞. In contrast, the affinely extended real number line (also called the two-point compactification of the real line) distinguishes between +∞ and ...
The real numbers have various lattice-theoretic properties that are absent in the complex numbers. Also, the real numbers form an ordered field, in which sums and products of positive numbers are also positive. Moreover, the ordering of the real numbers is total, and the real numbers have the least upper bound property:
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]
The definition: A real number is algebraic if it’s the root of some polynomial with integer coefficients. For example, x²-6 is a polynomial with integer coefficients, since 1 and -6 are integers.
The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.