When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively. Many well known distributions have simple convolutions.

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The convolution of and is written , denoting the operator with the symbol . [B] It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted.

  5. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    Indeed, even when the random variable does not have a density, the characteristic function may be seen as the Fourier transform of the measure corresponding to the random variable. Another related concept is the representation of probability distributions as elements of a reproducing kernel Hilbert space via the kernel embedding of distributions .

  6. Convolution power - Wikipedia

    en.wikipedia.org/wiki/Convolution_power

    Many applications of the convolution power rely on being able to define the analog of analytic functions as formal power series with powers replaced instead by the convolution power. Thus if F ( z ) = ∑ n = 0 ∞ a n z n {\displaystyle \textstyle {F(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}} is an analytic function, then one would like to be able ...

  7. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.

  8. Free convolution - Wikipedia

    en.wikipedia.org/wiki/Free_convolution

    Free convolution is the free probability analog of the classical notion of convolution of probability measures. Due to the non-commutative nature of free probability theory, one has to talk separately about additive and multiplicative free convolution, which arise from addition and multiplication of free random variables (see below; in the classical case, what would be the analog of free ...

  9. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).