When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. [1] In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably ...

  4. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17.

  5. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Quadratic irrational numbers, irrational solutions of a quadratic polynomial ax 2 + bx + c with integer coefficients a, b, and c, are algebraic numbers. If the quadratic polynomial is monic (a = 1), the roots are further qualified as quadratic integers. Gaussian integers, complex numbers a + bi for which both a and b are integers, are also ...

  6. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Square root of 5 [7] 2.23606 79774 99789 69640 [OEIS 5] Positive root of = ... is irrational. If true, this will prove the twin prime conjecture. ...

  7. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    The proof that the square root of 2 (√ 2) is irrational (i.e. cannot be expressed as a fraction of two whole numbers) was discovered by the ancient Greeks, and is perhaps the earliest known example of a proof by infinite descent.

  8. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Irrational numbers can be Euclidean. A good example is the square root of 2 (an irrational number). It is simply the length of the hypotenuse of a right triangle with legs both one unit in length, and it can be constructed with a straightedge and a compass.

  9. Hippasus - Wikipedia

    en.wikipedia.org/wiki/Hippasus

    Hippasus is sometimes credited with the discovery of the existence of irrational numbers, following which he was drowned at sea. Pythagoreans preached that all numbers could be expressed as the ratio of integers, and the discovery of irrational numbers is said to have shocked them. However, the evidence linking the discovery to Hippasus is unclear.