Search results
Results From The WOW.Com Content Network
In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear ...
Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an isometry of the hyperbolic plane metric space. Since Henri Poincaré explicated these models they have been named after him: the Poincaré disk model and the Poincaré half-plane model.
The automorphisms of a real projective line are called projective transformations, homographies, or linear fractional transformations. They form the projective linear group PGL(2, R ). Each element of PGL(2, R ) can be defined by a nonsingular 2×2 real matrix, and two matrices define the same element of PGL(2, R ) if one is the product of the ...
The group GL(2, Z) is the linear maps preserving the standard lattice Z 2, and SL(2, Z) is the orientation-preserving maps preserving this lattice; they thus descend to self-homeomorphisms of the torus (SL mapping to orientation-preserving maps), and in fact map isomorphically to the (extended) mapping class group of the torus, meaning that ...
In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
The composition of two central collineations, while still a homography in general, is not a central collineation. In fact, every homography is the composition of a finite number of central collineations. In synthetic geometry, this property, which is a part of the fundamental theory of projective geometry is taken as the definition of homographies.
These modes are eigenfunctions of a linear operator on a function space, a common construction in functional analysis. Functional analysis is a branch of mathematical analysis , the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product , norm , or topology ) and the ...