Search results
Results From The WOW.Com Content Network
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .
Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the real line, in which the rational numbers form a countable dense subset.
sequential space: a set is closed if and only if every convergent sequence in the set has its limit point in the set; first-countable space: every point has a countable neighbourhood basis (local base) second-countable space: the topology has a countable base; separable space: there exists a countable dense subset
A separable metric space is completely metrizable if and only if the second player has a winning strategy in this game. A second characterization follows from Alexandrov's theorem. It states that a separable metric space is completely metrizable if and only if it is a G δ {\displaystyle G_{\delta }} subset of its completion in the original metric.
Every second-countable space (it has a countable base of open sets) is a separable space (it has a countable dense subset). [8] A metric space is separable if and only if it is σ-compact. [9] Every sequentially continuous real-valued function in a metric space is a continuous function. [8] Every accumulation point of a subset of a metric space ...
{p} is dense and hence X is a separable space. However if X is uncountable then X \ {p} is not separable. This is an example of a subspace of a separable space not being separable. Countability (first but not second) If X is uncountable then X is first countable but not second countable. Alexandrov-discrete The topology is an Alexandrov topology.
For any manifold the properties of being second-countable, Lindelöf, and σ-compact are all equivalent. Every second-countable manifold is paracompact, but not vice versa. However, the converse is nearly true: a paracompact manifold is second-countable if and only if it has a countable number of connected components. In particular, a connected ...
A Lindelöf space is compact if and only if it is countably compact. Every second-countable space is Lindelöf, [5] but not conversely. For example, there are many compact spaces that are not second-countable. A metric space is Lindelöf if and only if it is separable, and if and only if it is second-countable. [6] Every regular Lindelöf space ...