When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    At low fields, the drift velocity v d is proportional to the electric field E, so mobility μ is constant. This value of μ is called the low-field mobility. As the electric field is increased, however, the carrier velocity increases sublinearly and asymptotically towards a maximum possible value, called the saturation velocity v sat.

  3. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion current , and carrier generation and recombination are combined into a single equation.

  4. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na + ) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s) . [ 1 ]

  5. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v , with respect to a magnet is calculated in the frame of reference of the magnet and in the ...

  6. Drift velocity - Wikipedia

    en.wikipedia.org/wiki/Drift_velocity

    The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.

  7. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    The drift velocity then determines the electric current density and its relationship to E and is independent of the collisions. Drude calculated the average drift velocity from p = −eEτ where p is the average momentum, −e is the charge of the electron and τ is the average time between the collisions. Since both the momentum and the ...

  8. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    As noted in the previous section, Faraday's law is not guaranteed to work unless the velocity of the abstract curve ∂Σ matches the actual velocity of the material conducting the electricity. [31] The two examples illustrated below show that one often obtains incorrect results when the motion of ∂Σ is divorced from the motion of the material.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.