Search results
Results From The WOW.Com Content Network
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
The neuromuscular junction is the synapse that is formed between an alpha motor neuron (α-MN) and the skeletal muscle fiber. In order for a muscle to contract, an action potential is first propagated down a nerve until it reaches the axon terminal of the motor neuron.
In some invertebrates, glutamate is the main excitatory transmitter at the neuromuscular junction. [3] [4] In the neuromuscular junction of vertebrates, EPP (end-plate potentials) are mediated by the neurotransmitter acetylcholine, which (along with glutamate) is one of the primary transmitters in the central nervous system of invertebrates. [5]
These neurotransmitters bind toreceptors on the postsynaptic terminal, which may be a neuron, or a muscle cell in the case of a neuromuscular junction. [1] These are collectively referred to as postsynaptic receptors, since they are located on the membrane of the postsynaptic cell.
The neuromuscular junction (NMJ) is the most well-characterized synapse in that it provides a simple and accessible structure that allows for easy manipulation and observation. The synapse itself is composed of three cells: the motor neuron , the myofiber , and the Schwann cell .
An electrical synapse is an electrically conductive link between two abutting neurons that is formed at a narrow gap between the pre- and postsynaptic cells, known as a gap junction. At gap junctions, cells approach within about 3.5 nm of each other, rather than the 20 to 40 nm distance that separates cells at chemical synapses.
Nerve conduction studies can only diagnose diseases on the muscular and nerve level. They cannot detect disease in the spinal cord or the brain. In most disorders of the muscle, nerve, or neuromuscular junction, the latency time is increased. [12] This is a result of decreased nerve conduction or electrical stimulation at the site of the muscle.
Several motorneurons compete for each neuromuscular junction, but only one survives until adulthood. [36] Competition in vitro has been shown to involve a limited neurotrophic substance that is released, or that neural activity infers advantage to strong post-synaptic connections by giving resistance to a toxin also released upon nerve stimulation.