When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Luminosity - Wikipedia

    en.wikipedia.org/wiki/Luminosity

    In the Hertzsprung–Russell diagram, the x-axis represents temperature or spectral type while the y-axis represents luminosity or magnitude. The vast majority of stars are found along the main sequence with blue Class O stars found at the top left of the chart while red Class M stars fall to the bottom right. Certain stars like Deneb and ...

  3. Apparent magnitude - Wikipedia

    en.wikipedia.org/wiki/Apparent_magnitude

    For example, a magnitude 2.0 star is 2.512 times as bright as a magnitude 3.0 star, 6.31 times as magnitude 4.0, and 100 times magnitude 7.0. The brightest astronomical objects have negative apparent magnitudes: for example, Venus at −4.2 or Sirius at −1.46.

  4. Magnitude (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(astronomy)

    Consequently, a magnitude 1 star is about 2.5 times brighter than a magnitude 2 star, about 2.5 2 times brighter than a magnitude 3 star, about 2.5 3 times brighter than a magnitude 4 star, and so on. This is the modern magnitude system, which measures the brightness, not the apparent size, of stars.

  5. Absolute magnitude - Wikipedia

    en.wikipedia.org/wiki/Absolute_magnitude

    L ★ is the star's luminosity (bolometric luminosity) in watts; L 0 is the zero point luminosity 3.0128 × 10 28 W; M bol is the bolometric magnitude of the star; The new IAU absolute magnitude scale permanently disconnects the scale from the variable Sun.

  6. Hertzsprung–Russell diagram - Wikipedia

    en.wikipedia.org/wiki/Hertzsprung–Russell_diagram

    Modern observational versions of the chart replace spectral type by a color index (in diagrams made in the middle of the 20th Century, most often the B-V color) of the stars. This type of diagram is what is often called an observational Hertzsprung–Russell diagram, or specifically a color–magnitude diagram (CMD), and it is often used by ...

  7. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    The equation of hydrostatic equilibrium may need to be modified by adding a radial acceleration term if the radius of the star is changing very quickly, for example if the star is radially pulsating. [9] Also, if the nuclear burning is not stable, or the star's core is rapidly collapsing, an entropy term must be added to the energy equation. [10]

  8. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    The value a = 3.5 is commonly used for main-sequence stars. [3] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2M ⊙ < M < 55M ⊙ and does not apply to red giants or white dwarfs. As a star approaches the Eddington luminosity then a = 1.

  9. Main sequence - Wikipedia

    en.wikipedia.org/wiki/Main_sequence

    The luminosity class ranged from I to V, in order of decreasing luminosity. Stars of luminosity class V belonged to the main sequence. [7] In April 2018, astronomers reported the detection of the most distant "ordinary" (i.e., main sequence) star, named Icarus (formally, MACS J1149 Lensed Star 1), at 9 billion light-years away from Earth. [8] [9]