When.com Web Search

  1. Ads

    related to: figurate number patterns for kindergarten

Search results

  1. Results From The WOW.Com Content Network
  2. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    a number represented as a discrete r-dimensional regular geometric pattern of r-dimensional balls such as a polygonal number (for r = 2) or a polyhedral number (for r = 3). a member of the subset of the sets above containing only triangular numbers, pyramidal numbers , and their analogs in other dimensions.

  3. Category:Figurate numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Figurate_numbers

    Pages in category "Figurate numbers" The following 51 pages are in this category, out of 51 total. This list may not reflect recent changes. ...

  4. Polygonal number - Wikipedia

    en.wikipedia.org/wiki/Polygonal_number

    In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...

  5. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is

  6. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.

  7. Cannonball problem - Wikipedia

    en.wikipedia.org/wiki/Cannonball_problem

    A triangular-pyramid version of the cannonball problem, which is to yield a perfect square from the N th Tetrahedral number, would have N = 48. That means that the (24 × 2 = ) 48th tetrahedral number equals to (70 2 × 2 2 = 140 2 = ) 19600. This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5]