Ads
related to: figurate number patterns examples
Search results
Results From The WOW.Com Content Network
The term figurate number is ... a number represented as a discrete r-dimensional regular geometric pattern of ... and a single one to the corner. For example, when ...
This category includes not only articles about certain types of figurate numbers, but also articles about theorems and conjectures pertaining to, and properties of, figurate numbers. Subcategories This category has only the following subcategory.
In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...
Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
Angel numbers are repeating number sequences, often used as a guide for deeper spiritual exploration. These sequences can range from 000 to 999 and have a distinct meaning and energy.
Whereas a prime number p cannot be a polygonal number (except the trivial case, i.e. each p is the second p-gonal number), many centered polygonal numbers are primes. In fact, if k ≥ 3, k ≠ 8, k ≠ 9, then there are infinitely many centered k -gonal numbers which are primes (assuming the Bunyakovsky conjecture ).