When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The substrate concentration midway between these two limiting cases is denoted by K M. Thus, K M is the substrate concentration at which the reaction velocity is half of the maximum velocity. [2] The two important properties of enzyme kinetics are how easily the enzyme can be saturated with a substrate, and the maximum rate it can achieve.

  3. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudo–first-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudo–first-order rate equation, which makes the treatment to obtain an integrated rate equation much ...

  4. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH 3 Br) is a bimolecular nucleophilic substitution (S N 2) reaction in a single bimolecular step. Its rate law is second-order: r = k[R−Br][OH −].

  5. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  6. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...

  7. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  8. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    where [A] 0 is the amount, absorbance, or concentration of substrate initially present and [A] t is the amount, absorbance, or concentration of that reagent at time, t. Normalizing data to fractional conversion may be particularly helpful as it allows multiple reactions run with different absolute amounts or concentrations to be compared on the ...

  9. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...