Ad
related to: noise figure calculation example problems with solutions
Search results
Results From The WOW.Com Content Network
Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain.These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.
Friis's formula is used to calculate the total noise factor of a cascade of stages, each with its own noise factor and power gain (assuming that the impedances are matched at each stage). The total noise factor can then be used to calculate the total noise figure. The total noise factor is given as
If the noise has expected value of zero, as is common, the denominator is its variance, the square of its standard deviation σ N. The signal and the noise must be measured the same way, for example as voltages across the same impedance. Their root mean squares can alternatively be used according to:
Here, k ≈ 1.38 × 10 −23 J/K is the Boltzmann constant and kT 0 is the available noise power density (the noise is thermal noise, Johnson noise). As a numerical example: A receiver has a bandwidth of 100 MHz, a noise figure of 1.5 dB and the physical temperature of the system is 290 K.
Received noise power, noise at a telecommunications receiver; Circuit noise level, ratio of circuit noise to some reference level; Channel noise level, some measure of noise in a communication channel; Noise-equivalent target, intensity of a target when the signal-to-noise level is 1 [2] Equivalent noise resistance, a measure of noise based on ...
The noise factor (a linear term) is more often expressed as the noise figure (in decibels) using the conversion: = The noise figure can also be seen as the decrease in signal-to-noise ratio (SNR) caused by passing a signal through a system if the original signal had a noise temperature of 290 K. This is a common way of expressing the noise ...
Different types of noise are generated by different devices and different processes. Thermal noise is unavoidable at non-zero temperature (see fluctuation-dissipation theorem), while other types depend mostly on device type (such as shot noise, [1] [3] which needs a steep potential barrier) or manufacturing quality and semiconductor defects, such as conductance fluctuations, including 1/f noise.
The ratio of (a) total received power, i.e., the signal to (b) the noise-plus-distortion power. This is modeled by the equation above. [2] The ratio of (a) the power of a test signal, i.e. a sine wave, to (b) the residual received power, i.e. noise-plus-distortion power. With this definition, it is possible to have a SINAD level less than one.
Ad
related to: noise figure calculation example problems with solutions