Search results
Results From The WOW.Com Content Network
p–n junctions represent the simplest case of a semiconductor electronic device; a p-n junction by itself, when connected on both sides to a circuit, is a diode. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the bipolar junction transistor (BJT) is a semiconductor in ...
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction ... Solve this differential equation to get a ...
A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Observe the different Quasi Fermi levels for conduction band and valence band in n and p regions (red curves). A depletion region forms instantaneously across a p–n junction.
The diffusion current and drift current together are described by the drift–diffusion equation. [1] It is necessary to consider the part of diffusion current when describing many semiconductor devices. For example, the current near the depletion region of a p–n junction is dominated by the diffusion current. Inside the depletion region ...
p–n junction operation in forward bias mode showing reducing depletion width. Both p and n junctions are doped at a 10 15 /cm 3 doping level, leading to built-in potential of ~ 0.59 V. Observe the different quasi-fermi levels for conduction band and valence band in n and p regions (red curves).
The ideality factor (also called the emissivity factor) is a fitting parameter that describes how closely the diode's behavior matches that predicted by theory, which assumes the p–n junction of the diode is an infinite plane and no recombination occurs within the space-charge region. A perfect match to theory is indicated when n = 1.
In a p-n junction diode, electrons and holes are the minority charge carriers in the p-region and the n-region, respectively. In an unbiased junction, due to the diffusion of charge carriers, the diffusion current, which flows from the p to n region, is exactly balanced by the equal and opposite drift current. [1]