Search results
Results From The WOW.Com Content Network
If the vertex lies to the left of the center of curvature, the radius of curvature is positive. If the vertex lies to the right of the center of curvature, the radius of curvature is negative. Thus when viewing a biconvex lens from the side, the left surface radius of curvature is positive, and the right radius of curvature is negative.
An aspheric lens or asphere (often labeled ASPH on eye pieces) is a lens whose surface profiles are not portions of a sphere or cylinder. In photography , a lens assembly that includes an aspheric element is often called an aspherical lens .
In lens systems, aberrations can be minimized using combinations of convex and concave lenses, or by using aspheric lenses or aplanatic lenses. Lens systems with aberration correction are usually designed by numerical ray tracing. For simple designs, one can sometimes analytically calculate parameters that minimize spherical aberration.
Deep blue ray refers the radius of curvature and the red line segment is the sagitta of the curve (black). In optics and especially telescope making, sagitta or sag is a measure of the glass removed to yield an optical curve. It is approximated by the formula (),
1: Imaging by a lens with chromatic aberration. 2: A lens with less chromatic aberration. In optics, aberration is a property of optical systems, such as lenses and mirrors, that causes the image created by the optical system to not be a faithful reproduction of the object being observed.
Diagram of Petzval's 1841 portrait lens - crown glass shaded pink, flint glass shaded blue. The lenses of the very earliest cameras were simple meniscus or simple bi convex lenses. It was not until 1840 that Chevalier in France introduced the achromatic lens formed by cementing a crown glass bi-convex lens to a flint glass plano-concave lens.
Base curve radius (BCR) or simply base curve (BC) is the measure of an important parameter of a lens in optometry. On a spectacle lens, it is the flatter curvature of the front surface. On a contact lens it is the curvature of the back surface and is sometimes referred to as the back central optic radius (BCOR). Typical values for a contact ...
Schmidt corrector plates work because they are aspheric lenses with spherical aberration that is equal to but opposite of the spherical primary mirrors they are placed in front of. They are placed at the center of curvature "C" of the mirrors for a pure Schmidt camera and just behind the prime focus for a Schmidt–Cassegrain. The Schmidt ...