Search results
Results From The WOW.Com Content Network
Bootstrapping is a procedure for estimating the distribution of an estimator by resampling (often with replacement) one's data or a model estimated from the data. [1] Bootstrapping assigns measures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to sample estimates.
To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n. From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 /n.
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...
The sample mean, on the other hand, is an unbiased [5] estimator of the population mean μ. [3] Note that the usual definition of sample variance is = = (¯), and this is an unbiased estimator of the population variance.
The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...
The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator). The sample mean is a random variable, not a constant, since its calculated value will randomly differ depending on ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are: