Search results
Results From The WOW.Com Content Network
Along with the current applications, acousto-optics presents interesting possible application. It can be used in nondestructive testing, structural health monitoring and biomedical applications, where optically generated and optical measurements of ultrasound gives a non-contact method of imaging.
The notion of acoustic microscopy dates back to 1936 when S. Ya. Sokolov [1] proposed a device for producing magnified views of structure with 3-GHz sound waves. However, due to technological limitations at the time, no such instrument could be constructed, and it was not until 1959 that Dunn and Fry [2] performed the first acoustic microscopy experiments, though not at very high frequencies.
Due to the sudden density change, much of the energy is lost, similar to shining a flashlight towards a piece of glass; some of the light is transmitted into the glass, but much of it is lost to reflection outwards. Similarly with an air-water interface, almost all of the sound is reflected off the water, instead of being transmitted into it.
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
Paint thickness gauges, ultrasonic coating thickness gauges, digital thickness gauges and many more options are available to test plastics, glass, ceramics, metal and other materials. Along with coating thickness, it is widely being used for thicknesses of glass, wood, and plastics and also serves as major testing equipment in the corrosion ...
This can be done with either a blood test or another ultrasound exam to visually count the number of follicles (i.e., the small fluid-filled sacs that hold one mature egg) on the ovaries.
Reflected ultrasound comes from an interface, such as the back wall of the object or from an imperfection within the object. The diagnostic machine displays these results in the form of a signal with an amplitude representing the intensity of the reflection and the distance, representing the arrival time of the reflection.
The `time of flight' of the pulse is defined as the time taken for it to be emitted by an acoustic source, scattered by an object and received by the detector, which is usually coincident with the source. The time of flight can be used to determine the distance of the inhomogeneity from the source given knowledge of the speed through the medium.