Search results
Results From The WOW.Com Content Network
This might seem to be a much stronger result than Liouville's theorem, but it is actually an easy corollary. If the image of f {\displaystyle f} is not dense, then there is a complex number w {\displaystyle w} and a real number r > 0 {\displaystyle r>0} such that the open disk centered at w {\displaystyle w} with radius r {\displaystyle r} has ...
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
Liouville's formula is a generalization of Abel's identity and can be used to prove it. Since Liouville's formula relates the different linearly independent solutions of the system of differential equations, it can help to find one solution from the other(s), see the example application below.
But Liouville's theorem does not imply that the ergodic hypothesis holds for all Hamiltonian systems. The ergodic hypothesis is often assumed in the statistical analysis of computational physics. The analyst would assume that the average of a process parameter over time and the average over the statistical ensemble are the same. This assumption ...
In conformal mappings, see Liouville's theorem (conformal mappings) In Hamiltonian mechanics, see Liouville's theorem (Hamiltonian) and Liouville–Arnold theorem; In linear differential equations, see Liouville's formula; In transcendence theory and diophantine approximations, the theorem that any Liouville number is transcendental
In dynamical systems theory, the Liouville–Arnold theorem states that if, in a Hamiltonian dynamical system with n degrees of freedom, there are also n independent, Poisson commuting first integrals of motion, and the level sets of all first integrals are compact, then there exists a canonical transformation to action-angle coordinates in which the transformed Hamiltonian is dependent only ...
Thus, on an intuitive level, the theorem states that the only elementary antiderivatives are the "simple" functions plus a finite number of logarithms of "simple" functions. A proof of Liouville's theorem can be found in section 12.4 of Geddes, et al. [4] See Lützen's scientific bibliography for a sketch of Liouville's original proof [5 ...
In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, [1] is a rigidity theorem about conformal mappings in Euclidean space.It states that every smooth conformal mapping on a domain of R n, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions).