Search results
Results From The WOW.Com Content Network
Phosphoribosyl pyrophosphate (PRPP) is a pentose phosphate. It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate , as well as in pyrimidine nucleotide formation.
Amidophosphoribosyltransferase (ATase), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme responsible for catalyzing the conversion of 5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-phosphoribosyl-1-amine (PRA), using the amine group from a glutamine side-chain.
Ribose-phosphate diphosphokinase (or phosphoribosyl pyrophosphate synthetase or ribose-phosphate pyrophosphokinase) is an enzyme that converts ribose 5-phosphate into phosphoribosyl pyrophosphate (PRPP). [1] [2] It is classified under EC 2.7.6.1.
Phosphoribosyl pyrophosphate synthetase-associated protein 1 is an enzyme that in humans is encoded by the PRPSAP1 gene. [5] [6] References
n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is an enzyme encoded in humans by the HPRT1 gene. HGPRT is a transferase that catalyzes conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate. This ...
The enzyme phosphoribosyl pyrophosphate synthetase (PRS) catalyzes the formation of phosphoribosyl pyrophosphate which is a substrate for synthesis of purine and pyrimidine nucleotides, histidine, tryptophan and NAD. PRS exists as a complex with two catalytic subunits and two associated subunits.
Phosphoribosyltransferases add activated ribose-5-phosphate (Phosphoribosyl pyrophosphate, PRPP) to bases, creating nucleoside monophosphates.There are two types of phosphoribosyltransferases: adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT).
The RNA chain is synthesized from the 5' end to the 3' end as the 3'-hydroxyl group of the last ribonucleotide in the chain acts as a nucleophile and launches a hydrophilic attack on the 5'-triphosphate of the incoming ribonucleotide, releasing pyrophosphate as a by-[6] product. Due to the physical properties of the nucleotides, the backbone of ...