Search results
Results From The WOW.Com Content Network
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]
Graphical placing of the resultant force. Resultant force and torque replaces the effects of a system of forces acting on the movement of a rigid body. An interesting special case is a torque-free resultant, which can be found as follows: Vector addition is used to find the net force;
When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
To graphically determine the resultant force of multiple forces, the acting forces can be arranged as edges of a polygon by attaching the beginning of one force vector to the end of another in an arbitrary order. Then the vector value of the resultant force would be determined by the missing edge of the polygon. [2]
The resulting vector is sometimes called the resultant vector of a and b. The addition may be represented graphically by placing the tail of the arrow b at the head of the arrow a, and then drawing an arrow from the tail of a to the head of b. The new arrow drawn represents the vector a + b, as illustrated below: [7] The addition of two vectors ...
Let P be the point of application of the force F and let P be the vector locating this point in a fixed frame. The wrench W = (F, P × F) is a screw. The resultant force and moment obtained from all the forces F i, i = 1, ..., n, acting on a rigid body is simply the sum of the individual wrenches W i, that is
The total force vector acting at the center of pressure is the surface integral of the pressure vector field across the surface of the body. The resultant force and center of pressure location produce an equivalent force and moment on the body as the original pressure field. Pressure fields occur in both static and dynamic fluid mechanics ...