Search results
Results From The WOW.Com Content Network
Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24 ...
For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]
The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [18] which supersedes the beta released February 14, 2008. [19] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most ...
PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...
A simple example would be a GPU program that collects data about average lighting values as it renders some view from either a camera or a computer graphics program back to the main program on the CPU, so that the CPU can then make adjustments to the overall screen view.
Project Coriander: Conversion CUDA to OpenCL 1.2 with CUDA-on-CL [123] [124] Lightweight Java Game Library (LWJGL) contains low-lag Java bindings for OpenCL Miscellaneous
Forward compatibility or upward compatibility is a design characteristic that allows a system to accept input intended for a later version of itself. The concept can be applied to entire systems, electrical interfaces , telecommunication signals , data communication protocols , file formats , and programming languages .