When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional factorial design - Wikipedia

    en.wikipedia.org/wiki/Fractional_factorial_design

    In practice, one rarely encounters l > 2 levels in fractional factorial designs as the methodology to generate such designs for more than two levels is much more cumbersome. In cases requiring 3 levels for each factor, potential fractional designs to pursue are Latin squares, mutually orthogonal Latin squares, and Taguchi methods.

  3. Yates analysis - Wikipedia

    en.wikipedia.org/wiki/Yates_Analysis

    A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the fractional factorial designs article. Formalized by Frank Yates , a Yates analysis exploits the special structure of these designs to generate least squares estimates for factor effects for ...

  4. Aliasing (factorial experiments) - Wikipedia

    en.wikipedia.org/wiki/Aliasing_(factorial...

    A fractional factorial design is said to have resolution if every -factor effect [note 4] is unaliased with every effect having fewer than factors. For example, a design has resolution R = 3 {\displaystyle R=3} if main effects are unaliased with each other (taking p = 1 ) {\displaystyle p=1)} , though it allows main effects to be aliased with ...

  5. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  7. Plackett–Burman design - Wikipedia

    en.wikipedia.org/wiki/Plackett–Burman_design

    If N is a power of 2, however, the resulting design is identical to a fractional factorial design, so Plackett–Burman designs are mostly used when N is a multiple of 4 but not a power of 2 (i.e. N = 12, 20, 24, 28, 36 …). [3]

  8. Central composite design - Wikipedia

    en.wikipedia.org/wiki/Central_composite_design

    A factorial (perhaps fractional) design in the factors studied, each having two levels; A set of center points, experimental runs whose values of each factor are the medians of the values used in the factorial portion. This point is often replicated in order to improve the precision of the experiment;

  9. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Fractional calculus is a branch of mathematical analysis ... using the gamma function to remove the discrete nature of the factorial function gives us a natural ...