Search results
Results From The WOW.Com Content Network
An output of pip install virtualenv. Pip's command-line interface allows the install of Python software packages by issuing a command: pip install some-package-name. Users can also remove the package by issuing a command: pip uninstall some-package-name. pip has a feature to manage full lists of packages and corresponding version numbers ...
It is an open-source cross-platform integrated development environment (IDE) for scientific programming in the Python language.Spyder integrates with a number of prominent packages in the scientific Python stack, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy and Cython, as well as other open-source software.
Anaconda, Inc. compiles and builds the packages available in the Anaconda repository itself, and provides binaries for Windows 32/64 bit, Linux 64 bit and MacOS 64-bit (Intel, Apple Silicon). Anything available on PyPI may be installed into a Conda environment using pip, and Conda will keep track of what it has installed and what pip has installed.
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies. [ 4 ] [ 5 ] [ 6 ] This ease of access combined with a simple and extensible code base in a well known language make SymPy a computer algebra system with a relatively low barrier to entry.