When.com Web Search

  1. Ad

    related to: class 9 polynomials solutions cue problems answer important

Search results

  1. Results From The WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem with couples; Knot genus [38] Latin square completion (the problem of determining if a partially filled square can be completed)

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC. Although a solution to an NP-complete problem can be verified "quickly ...

  4. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. [2]

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    If P ≠ NP, which is widely believed, it would mean that there are problems in NP that are harder to compute than to verify: they could not be solved in polynomial time, but the answer could be verified in polynomial time. The problem has been called the most important open problem in computer science. [1]

  6. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time. [ 1 ] [ 2 ] As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP .

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  8. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    A solution of a polynomial system is a tuple of values of (x 1, ..., x m) that satisfies all equations of the polynomial system. The solutions are sought in the complex numbers, or more generally in an algebraically closed field containing the coefficients. In particular, in characteristic zero, all complex solutions are sought. Searching for ...