Search results
Results From The WOW.Com Content Network
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .
The aliquot sum function can be used to characterize several notable classes of numbers: 1 is the only number whose aliquot sum is 0. A number is prime if and only if its aliquot sum is 1. [1] The aliquot sums of perfect, deficient, and abundant numbers are equal to, less than, and greater than the number itself respectively. [1]
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:
σ k (n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ 0 (n), the number of divisors of n, is usually written d(n) and σ 1 (n), the sum of the divisors of n, is usually written σ(n). If s > 0,
Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...
An average order of σ(n), the sum of divisors of n, is nπ 2 / 6; An average order of φ(n), Euler's totient function of n, is 6n / π 2; An average order of r(n), the number of ways of expressing n as a sum of two squares, is π; The average order of representations of a natural number as a sum of three squares is 4πn / 3;