When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    There is a symmetry between a function and its inverse. Specifically, if f is an invertible function with domain X and codomain Y, then its inverse f −1 has domain Y and image X, and the inverse of f −1 is the original function f. In symbols, for functions f:X → Y and f −1:Y → X, [13]

  3. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    Over a field F, a matrix is invertible if and only if its determinant is nonzero. Therefore, an alternative definition of GL(n, F) is as the group of matrices with nonzero determinant. Over a commutative ring R, more care is needed: a matrix over R is invertible if and only if its determinant is a unit in R, that is, if its determinant is ...

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  5. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    Moreover, f is the composition of the canonical projection from f to the quotient set, and the bijection between the quotient set and the codomain of . The composition of two surjections is again a surjection, but if g ∘ f {\displaystyle g\circ f} is surjective, then it can only be concluded that g {\displaystyle g} is surjective (see figure).

  6. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    An element y is called (simply) an inverse of x if xyx = x and y = yxy. Every regular element has at least one inverse: if x = xzx then it is easy to verify that y = zxz is an inverse of x as defined in this section. Another easy to prove fact: if y is an inverse of x then e = xy and f = yx are idempotents, that is ee = e and ff = f.

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    A matrix ⁡ is invertible (in the sense that there is an inverse matrix whose entries are in ) if and only if its determinant is an invertible element in . [43] For =, this means that the determinant is +1 or −1.

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of more than one variable, the theorem states that if is a continuously differentiable function from an open subset of into , and the derivative ′ is invertible at a point a (that is, the determinant of the Jacobian matrix of f at a is non-zero), then there exist neighborhoods of in and of = such that () and : is bijective. [1]

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero. This is the inverse function theorem. Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation.