When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A different trick may be used to prove = = + or in words, the sum of the squares of the first Fibonacci numbers up to is the product of the n-th and (n + 1)-th Fibonacci numbers. To see this, begin with a Fibonacci rectangle of size F n × F n + 1 {\displaystyle F_{n}\times F_{n+1}} and decompose it into squares of size F n , F n − 1 , . . .

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.

  4. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  5. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .

  6. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    In reading Liber Abaci, it is helpful to understand Fibonacci's notation for rational numbers, a notation that is intermediate in form between the Egyptian fractions commonly used until that time and the vulgar fractions still in use today. [12] Fibonacci's notation differs from modern fraction notation in three key ways:

  7. Category:Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Fibonacci_numbers

    Pages in category "Fibonacci numbers" The following 48 pages are in this category, out of 48 total. This list may not reflect recent changes. ...

  8. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]

  9. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...