Search results
Results From The WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +.. The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant.
However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series. This value is the limit as n {\displaystyle n} tends to infinity of the finite sums of the n {\displaystyle n} first terms of the series if the limit exists.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
Then the triangle is in Euclidean space if the sum of the reciprocals of p, q, and r equals 1, spherical space if that sum is greater than 1, and hyperbolic space if the sum is less than 1. A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270.
As with any infinite series, the sum + + + + is defined to mean the limit of the partial sum of the first n terms = + + + + + + as n approaches infinity, if it exists. By various arguments, [a] [1] one can show that each finite sum is equal to
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
The product of the members of a finite arithmetic progression with an initial element a 1, common differences d, and n elements in total is determined in a closed expression a 1 a 2 a 3 ⋯ a n = a 1 ( a 1 + d ) ( a 1 + 2 d ) . . .