When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +.. The first terms of the series sum to approximately ⁡ +, where is the natural logarithm and is the Euler–Mascheroni constant.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series. This value is the limit as ⁠ n {\displaystyle n} ⁠ tends to infinity of the finite sums of the ⁠ n {\displaystyle n} ⁠ first terms of the series if the limit exists.

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  6. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    Then the triangle is in Euclidean space if the sum of the reciprocals of p, q, and r equals 1, spherical space if that sum is greater than 1, and hyperbolic space if the sum is less than 1. A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270.

  7. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    As with any infinite series, the sum + + + + is defined to mean the limit of the partial sum of the first n terms = + + + + + + as n approaches infinity, if it exists. By various arguments, [a] [1] one can show that each finite sum is equal to

  8. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    The product of the members of a finite arithmetic progression with an initial element a 1, common differences d, and n elements in total is determined in a closed expression a 1 a 2 a 3 ⋯ a n = a 1 ( a 1 + d ) ( a 1 + 2 d ) . . .