When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. János Bolyai - Wikipedia

    en.wikipedia.org/wiki/János_Bolyai

    János Bolyai (Hungarian: [ˈjaːnoʃ ˈboːjɒi]; 15 December 1802 – 27 January 1860) or Johann Bolyai, [2] was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consistent alternative geometry that might correspond to the structure of the ...

  4. Nikolai Lobachevsky - Wikipedia

    en.wikipedia.org/wiki/Nikolai_Lobachevsky

    Nikolai Ivanovich Lobachevsky (Russian: Никола́й Ива́нович Лобаче́вский, IPA: [nʲɪkɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕefskʲɪj] ⓘ; 1 December [O.S. 20 November] 1792 – 24 February [O.S. 12 February] 1856) was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for ...

  5. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The model for hyperbolic geometry was answered by Eugenio Beltrami, in 1868, who first showed that a surface called the pseudosphere has the appropriate curvature to model a portion of hyperbolic space and in a second paper in the same year, defined the Klein model, which models the entirety of hyperbolic space, and used this to show that ...

  6. Henri Poincaré - Wikipedia

    en.wikipedia.org/wiki/Henri_Poincaré

    He also believed that the geometry of physical space is conventional. He considered examples in which either the geometry of the physical fields or gradients of temperature can be changed, either describing a space as non-Euclidean measured by rigid rulers, or as a Euclidean space where the rulers are expanded or shrunk by a variable heat ...

  7. Giovanni Girolamo Saccheri - Wikipedia

    en.wikipedia.org/wiki/Giovanni_Girolamo_Saccheri

    There is some minor argument on whether Saccheri really meant that, as he published his work in the final year of his life, came extremely close to discovering non-Euclidean geometry and was a logician. Some believe Saccheri concluded as he did only to avoid the criticism that might come from seemingly-illogical aspects of hyperbolic geometry.

  8. List of geometers - Wikipedia

    en.wikipedia.org/wiki/List_of_geometers

    René Descartes (1596–1650) – invented the methodology of analytic geometry, also called Cartesian geometry after him; Pierre de Fermat (1607–1665) – analytic geometry; Blaise Pascal (1623–1662) – projective geometry; Christiaan Huygens (1629–1695) – evolute; Giordano Vitale (1633–1711) Philippe de La Hire (1640–1718 ...

  9. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons