Search results
Results From The WOW.Com Content Network
The best-known and simplest example of Ampère's force law, which underlaid (before 20 May 2019 [1]) the definition of the ampere, the SI unit of electric current, states that the magnetic force per unit length between two straight parallel conductors is =,
As discussed above, electrons are the primary mover in metals; however, other devices such as the cationic electrolyte(s) of a battery, or the mobile protons of the proton conductor of a fuel cell rely on positive charge carriers. Insulators are non-conducting materials with few mobile charges that support only insignificant electric currents.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
[1] [better source needed] However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
Eddy currents (I, red) induced in a conductive metal plate (C) as it moves to the right under a magnet (N). The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet.
Metals and other solid materials expand upon heating and contract upon cooling. This is an undesirable occurrence in electrical systems. Copper has a low coefficient of thermal expansion for an electrical conducting material. Aluminium, an alternate common conductor, expands nearly one third more than copper under increasing temperatures.
The force on an electric charge depends on its location, speed, and direction; two vector fields are used to describe this force. [2]: ch1 The first is the electric field, which describes the force acting on a stationary charge and gives the component of the force that is independent of motion.