Search results
Results From The WOW.Com Content Network
Gravitational "weight" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. [2] This force can be added to by any other kind of force.
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
In United States customary units, the pound can be either a unit of force or a unit of mass. [24] Related units used in some distinct, separate subsystems of units include the poundal and the slug. The poundal is defined as the force necessary to accelerate an object of one-pound mass at 1 ft/s 2, and is equivalent to about 1/32.2 of a pound-force.
The pound-force provides an alternative unit of mass: one slug is the mass that will accelerate by one foot per second squared when acted on by one pound-force. [58] An alternative unit of force in a different foot–pound–second system, the absolute fps system, is the poundal , defined as the force required to accelerate a one-pound mass at ...
Systems of measure either define mass and derive a force unit or define a base force and derive a mass unit [1] (cf. poundal, a derived unit of force in a mass-based system). A slug is defined as a mass that is accelerated by 1 ft/s 2 when a net force of one pound (lbf) is exerted on it. [2]
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
Given two bodies, one with mass m 1 and the other with mass m 2, the equivalent one-body problem, with the position of one body with respect to the other as the unknown, is that of a single body of mass [1] [2] = = + = +, where the force on this mass is given by the force between the two bodies.