Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. If greater values of one variable mainly correspond with greater values of the other variable, and the same holds for lesser values (that is, the variables tend to show similar behavior), the covariance is positive. [2]
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
In statistics, the Pearson correlation coefficient (PCC) [a] is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always ...
Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E( X | Z = z) = g(z) then the random variable E( X | Z) is g(Z). Similar comments apply to the conditional covariance.
In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...
The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a row vector whose j th element (j = 1, ..., K) is one of the random variables. [1] The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample ...
One approach to estimating the covariance matrix is to treat the estimation of each variance or pairwise covariance separately, and to use all the observations for which both variables have valid values. Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many ...